This paper studies the long-existing idea of adding a nice smooth function to"smooth" a non-differentiable objective function in the context of sparseoptimization, in particular, the minimization of$||x||_1+1/(2\alpha)||x||_2^2$, where $x$ is a vector, as well as theminimization of $||X||_*+1/(2\alpha)||X||_F^2$, where $X$ is a matrix and$||X||_*$ and $||X||_F$ are the nuclear and Frobenius norms of $X$,respectively. We show that they can efficiently recover sparse vectors andlow-rank matrices. In particular, they enjoy exact and stable recoveryguarantees similar to those known for minimizing $||x||_1$ and $||X||_*$ underthe conditions on the sensing operator such as its null-space property,restricted isometry property, spherical section property, or RIPless property.To recover a (nearly) sparse vector $x^0$, minimizing$||x||_1+1/(2\alpha)||x||_2^2$ returns (nearly) the same solution as minimizing$||x||_1$ almost whenever $\alpha\ge 10||x^0||_\infty$. The same relation alsoholds between minimizing $||X||_*+1/(2\alpha)||X||_F^2$ and minimizing$||X||_*$ for recovering a (nearly) low-rank matrix $X^0$, if $\alpha\ge10||X^0||_2$. Furthermore, we show that the linearized Bregman algorithm forminimizing $||x||_1+1/(2\alpha)||x||_2^2$ subject to $Ax=b$ enjoys globallinear convergence as long as a nonzero solution exists, and we give anexplicit rate of convergence. The convergence property does not require asolution solution or any properties on $A$. To our knowledge, this is the bestknown global convergence result for first-order sparse optimization algorithms.
展开▼
机译:本文研究了长期存在的思想,即在稀疏优化的情况下,特别是在$ || x || _1 + 1 /(2 \ alpha)最小化的情况下,为“平滑”不可微分的目标函数添加漂亮的平滑函数。 )|| x || _2 ^ 2 $,其中$ x $是向量,以及$ || X || _ * + 1 /(2 \ alpha)|| X || _F ^ 2 $的最小化,其中$ X $是矩阵,而$ || X || _ * $和$ || X || _F $分别是$ X $的核规范和Frobenius规范。我们表明,它们可以有效地恢复稀疏向量和低秩矩阵。尤其是,它们享有精确而稳定的恢复保证,类似于在感测算符的零空间性质,受限等距性质等条件下使$ || x || _1 $和$ || X || _ * $最小化的保证。 ,球形截面属性或RIPless属性。要恢复(几乎)稀疏矢量$ x ^ 0 $,请将$ || x || _1 + 1 /(2 \ alpha)|| x || _2 ^ 2 $最小化,返回(几乎)与使$ || x || _1 $最小化几乎相同的解决方案,只要$ \ alpha \ ge 10 || x ^ 0 || __infty $。在最小化$ || X || _ * + 1 /(2 \ alpha)|| X || _F ^ 2 $与最小化$ || X || _ * $以恢复(几乎)低耗电之间也存在相同的关系。如果$ \ alpha \ ge10 || X ^ 0 || _2 $,则对矩阵$ X ^ 0 $进行排名。此外,我们证明了使线性化的Bregman算法最小化$ || x || _1 + 1 /(2 \ alpha)|| x || _2 ^ 2 $并遵守$ Ax = b $,只要非零解具有全局线性收敛性存在,我们给出了一个明确的收敛速度。收敛属性不需要解决方案或$ A $上的任何属性。据我们所知,这是一阶稀疏优化算法的最著名的全局收敛结果。
展开▼